# SPECIAL FUNCTIONS

### COMPOSITE FUNCTION



"Function Composition" means applying one function to the results of another.

## PROPERTIES OF COMPOSITE FUNCTIONS =

- $\implies$  The composite of functions is not commutative.  $(gof)(x) \neq (fog)(x)$
- The composite of functions is associative. if f,g,h are three functions Then fo(goh) = (fog)oh
- $\Rightarrow$  The composite of two bijections is a bijection. if f and g are two bijections such that  $g \circ f$  is defined, then  $g \circ f$  is also a bijection.

### INVERSE FUNCTION



Let  $f: A \to B$  be a bijective function, then there exists a unique  $g: B \to A$  such that  $f(x) = y \Leftrightarrow g(y) = x$ , for all  $x \in A$  and  $y \in B$ . Then 'g' is said to be inverse of 'f'.

## PROPERTIES OF INVERSE FUNCTION

- The inverse of a bijection is unique.
- If  $f: A \to B$  is a bijection and  $g: B \to A$  is the inverse of f, then  $f \circ g = I_B$  and  $g \circ f = I_A$ , where  $I_A$  and  $I_B$  are identity functions on the sets A and B respectively.
- The inverse of a bijection is also a bijection.
- If f & g are two bijections;  $f: A \to B$ ,  $g: B \to C$  then the inverse of gof exists and  $(gof)^{-1} = f^{-1}og^{-1}$ .